
Multi-Row Standard Cell Layout Synthesis with
Enhanced Scalability

Kairong Guo1,2, Yibo Lin1,3,4*

1School of Integrated Circuits, Peking University, Beijing, China
2School of Integrated Circuit Science and Engineering, Beihang University, Beijing, China

3Institute of Electronic Design Automation, Peking University, Wuxi, China
4Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China

kr.guo@buaa.edu.cn, yibolin@pku.edu.cn

Abstract—Multi-row standard cells are widely adopted in
advanced technology nodes, especially for complicated and large
cells like multi-bit flip-flops(MBFFs). Due to reduced cell heights
and routing tracks, designing standard cell layouts in advanced
technology nodes becomes increasingly challenging. Automatic
standard cell layout synthesis is being actively explored. However,
existing methods face scalability issues when synthesizing large-
scale multi-row cells. In this paper, we propose a multi-row
cell layout synthesis flow that addresses such scalability issue
through a hierarchical approach, including transistor cluster-
ing, SMT-based row assignment, transistor-level and cluster-
level placement, and genetic-algorithm-based sequential rout-
ing, which collectively enables efficient handling of large-scale
designs. Experimental results on an industrial 7nm FinFET
library demonstrate the ability to handle designs with up to
152 transistors, achieving area reductions up to 23% on large
MBFF cells and reducing runtime by up to 36× compared to
prior methods.

Index Terms—standard cell, layout synthesis, transistor-level
placement and routing

I. INTRODUCTION

In advanced technology nodes, standard cell libraries have
expanded to include a larger variety and number of cells,
which makes manual design more time-consuming. This grow-
ing complexity necessitates the use of standard cell layout syn-
thesis to automate the design process and improve efficiency.
Additionally, the height of standard cells in advanced nodes
has been steadily reduced to accommodate increasing transis-
tor densities and enhance chip performance. This reduction
in cell height has led to fewer routing tracks per row [1],
posing significant challenges to layout design and routability.
To address these issues and achieve better performance, the
adoption of multi-row standard cells has become increasingly
prevalent. As shown in Figure 1(a), we analyzed the cell
height distribution of an industrial 7nm FinFET standard cell
library, revealing a significant increase in multi-row designs
with reduced row heights and fewer routing tracks. Multi-
row designs provide greater flexibility in balancing power,
performance, and area trade-offs, making them essential in
modern standard cell libraries for advanced nodes.

*Corresponding author.
This project is supported in part by Grant QYJS-2023-2303-B and 111 project
(B18001).

55%

43%

2%

61%

30%

8%
1%

single-row

2-row

4-row

8-row

6t

7.5t

55%

43%

2%

61%

30%

8%
1%

single-row

2-row

4-row

8-row

6t

7.5t

(a)

NMOS

D SG

PMOS

G SD

VDD

VSS

VDD

VDD

VSS

VDD

Inter-Row 

Gate Share

VDD

VSS

VDD

Inter-Row 

Gate Share
NMOS

D SG

PMOS

G SD

VDD

VSS

VDD

Inter-Row 

Gate Share

(b)

Fig. 1: (a) Cell height distribution in an industrial 7nm FinFET
library. Almost half of the cells in this library take multiple
rows, and the proportion of multi-row cells increases as the
number of routing tracks decreases. (b) Sketch of a multi-row
cell. NMOS and PMOS are positioned around the power rails.

Standard cell layout synthesis involves transistor-level
placement and routing, with the primary objective of mini-
mizing cell area. Most existing studies focus on the layout
synthesis of single-row cells. In this scenario, the placement
problem is typically formulated as a transistor ordering task,
where transistors are flipped and sorted within a single row.
Early research in the last century utilizes Euler paths to de-
termine the optimal transistor ordering for generating layouts
of combinational logic cells [2] [3]. Other approaches explore
branch-and-bound methods to search for transistor ordering
[4] [5] or employ simulated annealing algorithms to optimize
the ordering [6]. Concurrent routing is a common approach
for intra-cell routing. For example, [7] [8] [9] models this
process as a SAT/MAXSAT problem. Additionally, SP&R [10]
leverages Satisfiability Modulo Theories(SMT) to achieve si-
multaneous placement and routing, exploring a larger solution
space.

Few studies have explored the synthesis of multi-row cells.
In this scenario, while the underlying routing problem re-
mains largely the same, placement becomes significantly more
complex. The solution space expands as it requires assigning
each transistor to an appropriate row while ensuring sufficient
global consideration to maximize the benefits of vertical
interconnectivity, including inter-row gate sharing, as shown
in Figure 1(b). Moreover, multi-row standard cells typically
contain a higher number of transistors, further increasing
the complexity of the placement process. Studies, such as



GA-based 

Intra-cell 

Routing

Placement

SA-based 

Cluster 

Placement

Minimum-area 

placements

Minimum-area 

placements

SMT-based 

Cluster Row 

Assignment

Transistor-Level 

Placement

Transistor 

Clustering

Placement

SA-based 

Cluster 

Placement

Minimum-area 

placements

SMT-based 

Cluster Row 

Assignment

Transistor-Level 

Placement

Transistor 

Clustering

Netlist 

Information

Cell 

Architecture

Multi-row 

Configuration

Netlist 

Information

Cell 

Architecture

Multi-row 

Configuration

Fig. 2: Proposed multi-row standard cell layout synthesis flow.

BonnCell [4], MCell [8] and SNUCell [5] have made attempts
in this direction. However, these approaches lack global con-
sideration and face scalability issues as the design size grows.

To tackle the above challenge, in this work, we propose
a multi-row standard cell layout synthesis flow. The key
contributions are summarized as follows:

• We propose a multi-row standard cell layout synthesis
flow, leveraging a hybrid combinatorial optimization ap-
proach to efficiently handle large-scale multi-row cells.

• We introduce a hierarchical approach that first clusters
transistors, and then performs placement and SMT-based
row assignment for each cluster, followed by a simulated
annealing based global optimization step. This method
ensures both scalability and global consideration.

• Experimental results on an industrial 7nm FinFET library
with 316 cells demonstrate that our approach exhibits
excellent scalability, with a maximum area reduction of
23% for large MBFF cells and runtime reductions of up
to 36× compared to the recent method [8] for multi-row
cells.

The rest of the paper is organized as follows, Section II
introduces the motivation; Section III explains the details
of the proposed flow; Section IV validates the flow with
experimental results; Section V concludes the paper.

II. PRELIMINARIES

A. Global Consideration for Multi-Row Cells

Recent studies specifically addressing the layout synthesis
of multi-row standard cells remain limited. Most existing
approaches still reduce the problem to a single-row layout
scenario for processing. For instance, MCell [8] employs an
intuitive algorithm that first generates a single-row transistor
placement and then folds it into two or more rows.

BonnCell [4] proposes a method that uses Mixed Integer
Programming for row assignment, followed by independent
single-row placements. This approach, however, neglects inter-
row dependencies during the placement process. Similarly,
SNUCell [5] adopts a comparable strategy but leverages Sat-
isfiability Modulo Theories for row assignment instead.

While placement algorithms designed for single-row cells
are reasonable for local placement, relying on them to generate
multi-row layouts or applying them on a broader scale tends to

overlook global considerations, which can result in suboptimal
designs.

B. Scalability Challenge

Minimizing the layout area of standard cells is a central
task in standard cell layout synthesis, which is known to be
an NP-hard optimization problem [11]. Furthermore, existing
methods often rely on techniques such as Satisfiability Modulo
Theories to pursue optimality, leading to inherent scalability
issues.

SP&R [10] discusses the scalability of its approach, vali-
dating runtime prediction through tests on 65 combinational
logic cells. While promising, this prediction may be overly
optimistic, as it primarily focuses on smaller designs and ex-
cludes larger ones, such as MBFF. Notably, the largest design
presented in [10] comprises only 36 FETs (SDFFSNQ X1),
requiring 6168 seconds for synthesis.

In contrast, NVCell [6] validates its method on designs
from an industrial library, claiming the ability to handle up
to 114 FETs. To improve runtime, the authors introduced
a Transformer Model-Based Clustering Method to accelerate
the placement process [12]. Despite these efforts, the runtime
remains in the order of tens of thousands of seconds for
designs exceeding 80 transistors. Nevertheless, their staged
placement approach provides valuable insights, demonstrating
that a phased methodology can effectively enhance scalability.

C. Problem Formulation for Multi-Row Cell Layout Synthesis

Given the transistor-level netlist of a standard cell and the
specified number of rows for placement, the goal is to generate
a standard cell layout optimized for area and wirelength. This
involves placing the standard cells into the specified number of
rows, minimizing the area of the layout while simultaneously
optimizing the total wirelength, including considerations of the
benefits of vertical interconnectivity.

III. ALGORITHM

A. Overview of Proposed Flow

Figure 2 illustrates the proposed multi-row standard cell
layout synthesis flow. The synthesis process begins by clus-
tering transistors based on their connectivity, with constraints
imposed on the total number of clusters and the number of



(a)

AA

A A

BB

B B

Y

AA

A A

BB

B B

Y

AA

A A

BB

B B

Y

AA

A A

BB

B B

Y

AA

A A

BB

B B

Y

AA

A A

BB

B B

Y

(b)

Fig. 3: (a) Clustering rules for sequential logic cells, where
transistors within the same cluster are connected only through
non-VDD/VSS drains or sources. The red net is split due to
its connection to gates. (b) Clustering rules for combinational
logic cells, based on branches or gate inputs.

transistors within each cluster. Subsequently, SMT is em-
ployed to perform row assignment for each cluster, while a
local single-row placement is executed within each cluster.
The minimum-area placement of each cluster is obtained
by traversing Euler paths. Simulated annealing is utilized to
optimize the arrangement of clusters within their respective
rows, resulting in the final placement of the cell. The final
layout is obtained by applying a maze router that incorporates
a genetic algorithm for rip-up and reroute.

The initial transistor clustering significantly reduces the
problem size for subsequent row assignment and local place-
ment, thereby substantially decreasing the overall runtime.
Simulated annealing is employed for a global refinement of
the placement. A maze router based on genetic algorithms
is employed for routing, leveraging its capability for parallel
searches to enhance routing efficiency while producing a
diverse set of routing solutions.

B. Transistor Clustering

We perform transistor clustering to handle larger sequential
logic cells, such as MBFFs. As illustrated in Fig. 3, clustering
is based on the connectivity of transistors. Specifically, tran-
sistors within the same cluster are connected only through nets
that are neither VDD nor VSS, and these nets are exclusively
connected to the drains or sources of the transistors.

When the source or drain of horizontally adjacent transistors
are connected to the same net, they can overlap, enabling
diffusion sharing to reduce the overall area. This clustering
approach ensures that transistors within the same cluster are
functionally related and capable of achieving diffusion sharing
among themselves. On the other hand, transistors belonging to
different clusters can only achieve diffusion sharing through
VDD or VSS.

For combinational logic cells, the clustering process typi-
cally results in a single cluster under the aforementioned rules.
However, to adapt to this flow, these cells are clustered based

A CDBA CDB

ABD CDBABD CDB

Double Diffusion Break(DDB)

Fig. 4: Example of inserting a double diffusion break, which
can also be inserted between another pair of odd-degree nodes.

on branches or gate inputs. This is because larger combina-
tional logic cells often exhibit highly repetitive structures.

C. Transistor-Level Placement and Row Assignment

After performing transistor clustering, we subsequently
generate the placement for each transistor within individual
clusters and allocate rows for each cluster. These two parts are
included in the same section because both make use of Euler
paths, but in different ways. The former obtains minimum-area
placements by traversing Euler paths, while the latter predicts
the width of each row using Euler paths. Also, after clustering,
these two processes can run in parallel without a specific order.

If gates are treated as edges and source/drain terminals as
vertices, then an Euler path on the resulting graph corresponds
to the minimum-area transistor chain [2]. By performing this
operation separately for NMOS and PMOS transistors, and
then merging the resulting chains, we obtain the minimum-
area transistor placement.

It is important to note that a necessary condition for an
Euler path to exist is that at most two vertices have an odd
degree. Since odd-degree vertices appear in pairs, an Euler
path can be ensured by inserting additional edges, referred to
as a diffusion break. The library we used for testing employs
a double diffusion break (DDB), as shown in Figure 4. The
DDB can also be viewed as two dummy transistors.

The notations used in this section can be found in Table I.
TABLE I: Notations for Section III-C

Term Description
Ci,n, Ri,p Set of NMOS/PMOS in ith cluster/row

GT Graph constituted by transistors from set T
ODD(G) Set of odd-degree vertices in Graph G
odd(G) Number of odd-degree vertices in Graph G

r(t), r(C) The row number of transistor t/cluster C
N Set of multi-pin nets

n, p, y(p) Net n and pin p, and the y-coordinate of pin p

wi, w(t) Width of ith row and width of transistor t
DDB Width of double diffusion break

1) Traversing Euler Paths: Enumerating all Euler paths
on an undirected graph involves exponential computational
complexity as the size of the graph grows. However, when
the starting point of the path is fixed and the graph size is
limited, the computational effort becomes manageable. The
determination of the path starting point and the dummy



insertion method are described as follows. For a cluster C,
taking the graph GCn as an example:

• If odd(GCn) = 0, the vertex corresponding to VSS is se-
lected as the starting point, because transistors belonging
to different clusters can only achieve diffusion sharing
through VDD or VSS.

• If odd(GCn
) = 2, two vertices from ODD(GCn

) are
chosen as the starting points.

• If odd(GCn) > 2, a different pair of vertices is selected
from ODD(GCn

) as the starting points, and the remain-
ing vertices in ODD(GCn

) are paired and connected.
Then, the Euler path traversal begins. This is more
complex as it requires traversing through different starting
points and connection configurations of the remaining
vertices in ODD(GCn

). Fortunately, experimental results
show that typically odd(GCn

) ≤ 4.

The specific Euler Paths traversal method, after selecting
a pair of starting points for GCn

and GCp
, is to perform a

depth-first search (DFS) simultaneously on both graphs using
point pairs. The routability-optimal result is selected based on
gate sharing as the final outcome.

2) SMT-based Cluster Row Assignment: We assume that
the transistors within the same cluster are functionally related.
Given that the size of each cluster is relatively small, the local
nets can be effectively handled with horizontal interconnects
using metal layer M0, without the need for multi-row designs.
Therefore, placing the entire cluster within a single row is
a reasonable approach. This method shifts the focus of row
assignment from individual transistors to entire clusters, which
significantly reduces the problem scale. While this approach
may lack flexibility for small cells, it is well-suited for large
cells.

The specific formulation for the SMT-based Cluster Row
Assignment is as follows. Given all transistors T , the transistor
netlist N , and the number of rows k to be assigned, the
objective is to lexicographically optimize the overall cell width
and vertical interconnects:

min
r(t),t∈T


max
0≤i≤k

wi,∑
n∈N

max
p∈n

y(p)−min
p∈n

y(p)

subject to

{
0 ≤ r(C) ≤ k, ∀C ⊆ T,

r(t) = r(C), ∀t ∈ C

(1)

wi is estimated from the Euler path as follows:

wi = max(wi,n, wi,p)

wi,n/p =
∑

t∈Ri,n/p

w(t) +DDB × (
odd(GRi,n/p)

2
− 1) (2)

We use the SMT solver Z3 [13] to solve the optimization
problem, with a maximum search time limit. If the time limit
is exceeded, the current best solution is returned.

D. Cluster-Level Placement
After obtaining the placement and row assignment for

each cluster, we employ a simulated annealing algorithm to
determine the exact position and orientation of each cluster
within its assigned row. The optimization objective combines
the overall cell area, inter-row gate sharing, and weighted half-
perimeter wirelength (HPWL).

While each cluster is confined to its designated row, this
approach incorporates global considerations for the multi-row
placement. The use of simulated annealing is due to its ease of
implementation and the manageable scale of the Cluster-Level
Placement.

E. Genetic Algorithms based Sequential Routing
For the routing part, we employ a sequential routing ap-

proach, using a rip-up and reroute strategy based on the
positional information, to explore routing solutions. We adopt
a Genetic Algorithm framework for search, with a routing
segment-based genetic encoding strategy which was already
used in channel routing in the previous century [14]. At the
core, a maze router based on the A* algorithm is used to
generate a large number of initial routing results and perform
rerouting. The details are as follows.

1) A* based Maze Router with Design Rule Checker: The
generation of initial solutions and rerouting are both handled
by an A* based Maze Router, which performs routing on
a grid space determined by the routing tracks. The pins of
unrouted nets are dynamically selected based on the placement
information and the routing of other nets. The given position of
IO pins serves as a soft constraint, guiding the routing process.
During the A* searching, the router continuously checks the
design rules in real-time based on the occupancy status of the
grid space.

2) Genetic Algorithms Framework: The framework for the
rip-up and reroute search using Genetic Algorithm is shown
in Algorithm 1. The generation of the initial solution and the
rerouting process are both based on a random routing order.

Algorithm 1 Genetic Algorithm Framework

1: Input: Initial routing solutions S = {R1,R2,R3, . . . ,Rk},
generations G

2: for g = 1 to G do
3: New generation S′ ← ∅
4: for i = 1 to k

2 do
5: Select (Ri,Rj) with roulette wheel selection
6: (R′

i,R′
j)← crossover(Ri,Rj)

7: R′
i ← mutate(R′

i), R′
j ← mutate(R′

j)
8: S′ ← S′ ∪ R′

i,R′
j

9: end for
10: S ← Sort&SelectTopkFitness(S ∪ S′)
11: if The solution with the highest fitness (R0 ∈ S) is

completed then
12: Output R0 and terminate
13: end if
14: end for
15: Output R0



TABLE II: Comparison with MCell [8]. The metrics include area, metal length (ML), via count, increased m2 track usage,
and runtime (measured in seconds), where runtime P and runtime R represent runtime of placement and routing respectively.

MCell [8] OurCell Size area ML m2 via runtime P runtime R runtime area ML m2 via runtime
DFFQA X0.7(2bit) 52 0.94 0.71 0.32 0.84 1.93 1.32 3.25 0.94 0.81 0.27 0.91 2.60
DFFQA X1.3(2bit) 56 0.94 0.82 0.54 0.89 32.52 1.45 33.97 0.89 0.70 0.18 0.81 1.96
DFFQA X2(2bit) 56 0.77 0.70 0.50 0.77 34.22 1.37 35.59 0.82 0.51 0.02 0.58 1.74

DFFQNA X0.7(2bit) 52 0.94 0.75 0.23 0.84 4.95 2.12 7.06 0.94 0.92 0.51 1.07 4.65
DFFQNA X1.3(2bit) 56 0.94 0.81 0.53 0.95 157.94 1.41 159.35 0.89 0.59 0.02 0.65 1.98
DFFQNA X2(2bit) 56 0.77 0.74 0.43 0.97 168.91 1.31 170.22 0.82 0.53 0.02 0.60 2.17

INV X8F 16 1.00 0.59 0.03 0.64 331.44 0.35 331.79 1.00 0.54 0.02 0.49 3.36
INV X8N 16 1.00 0.54 0.02 0.49 331.69 0.37 332.06 1.00 0.54 0.02 0.49 3.49

NAND2 X4N 16 1.00 0.74 0.10 0.92 37.88 0.42 38.30 1.00 0.57 0.03 0.64 3.97
NAND2 X4R 16 1.00 0.74 0.10 0.92 41.63 0.45 42.07 1.00 0.57 0.03 0.64 3.88
NOR2 X4F 16 1.00 0.77 0.14 1.00 41.31 0.43 41.74 1.00 0.57 0.03 0.69 3.79
NOR2 X4N 16 1.00 0.77 0.14 1.00 42.85 0.44 43.29 1.00 0.57 0.03 0.69 3.98

Average 0.94 0.72 0.27 0.84 107.67 1.00 108.67 0.94 0.62 0.11 0.69 3.05

AO
I

IN
V

NA
ND NO

R
OA

I
LA

T
DF

F
SD

FF

0
20
40
60
80

100
120

Nu
m

be
r o

f C
el

ls

Cell Size
Transistors

0-30
30-60
60-90
90-120
120-150
>150

AO
I

IN
V

NA
ND NO

R
OA

I
LA

T
DF

F
SD

FF

0
20
40
60
80

100
120

Cell Height
Rows

1
2
4

Fig. 5: The left figure shows the sizes of selected cells, while
the right figure illustrates the original row configurations of
these cells. Selection Criterion:>30 transistors or multi-row.

We use an R-tree to record the position information of each
routed net, which is then used for the crossover and mutation
operations:

• crossover(Ri,Rj):A random x or y coordinate is se-
lected.For example, when selecting the x-coordinate, all
routed nets in Ri that lie to the left of x are merged with
all routed nets in Rj that lie to the right of x. A reroute
is then performed to obtain R′

i. The generation of R′
j

follows the same procedure.
• mutate(Ri):A random rectangular region is selected, and

all routed nets in Ri that overlap with this region are
removed. A reroute is then performed to obtain R′

i.
The fitness is determined by the proportion of routed nets

and the HPWL.

IV. EXPERIMENTAL RESULTS

Our work is implemented in C++ and executed on a PC
equipped with an Intel Ultra 5 125H CPU, utilizing up to
4 threads for the GA-based routing. In this study, we select
316 standard cell designs from an industrial standard cell
library at a 7nm FinFET technology node. As a cell should
be large enough to be designed as multi-row, we select
cells with more than 30 transistors or whose original manual
implementations are multi-row. Additionally, to ensure the
comprehensiveness of the cell types, we also include latches

from the industrial library even if they do not meet the
above criteria. The statistics about selected cell types and
their original row counts are plotted in Figure 5. These cells
span a wide range of functionalities, including various types
of flip-flops and combinational logic gates. Their sizes range
from 16 transistors to 152 transistors, reflecting the diverse
design requirements encountered in practical applications. The
experiments are organized as follows:

• Exp. 1: Efficiency Comparison: We compare our al-
gorithm with MCell [8] to validate the performance our
placement.

• Exp. 2: Scalability Validation: We generate all 316 cells
as 2-row, 2-bit DFF/SDFF cells as 3-row, and 2-bit and
4-bit DFF/SDFF cells as 4-row to validate the scalability
of our algorithm.

All the subsequently presented metrics, including area,
wirelength, are normalized against manually designed layouts
from the industrial library.

A. Efficiency Comparison

We obtained the executable file for MCell [8], used it for
placement, and then applied our router for routing. The results
are compared with those generated by our own flow. Since
MCell is based on ASAP7 [15], it has compatibility issues
when adapting to design rules from actual industrial libraries.
Thus, we compare with a subset of cells where MCell can
successfully complete, as shown in Table II. Our algorithm
achieves a 36× runtime speedup with a 13.9% reduction
in metal length and 17.9% reduction in via usage, while
maintaining the same area ratio on average. The speedup is
primarily observed in the placement phase, as the routing time
is negligible compared to the placement time in MCell. This
indicates that the hierarchical placement approach substan-
tially enhances cell synthesis efficiency.

B. Scalability Validation

We generated all 316 cells as 2-row designs, with over
90% of them being successfully routable and LVS/DRC clean.
The results are summarized in Table III, demonstrating im-
provements in area, metal length, and via usage compared to



TABLE III: Generation results of all cells. The results include
designs with 2-row, 3-row, and 4-row configurations.

Cell
Type Suc/Tot Size Avg.

RT Area ML Via m2
usage

Suc
Rate

2-Row
AOI 14/14 24-36 36.49 1.00 0.86 0.73 0.04
INV 17/17 16-40 10.93 1.00 0.64 0.69 0.01
LAT 48/48 16-30 0.77 1.32 0.93 0.87 -0.03

NAND 10/10 16-36 9.08 1.00 0.77 0.66 0.02
NOR 10/10 16-36 9.14 1.00 0.78 0.68 0.02
OAI 14/14 24-36 28.70 1.00 0.86 0.73 0.06

DFF(1,2,4B) 66/74 26-120 390.73 0.93 0.84 0.91 0.16
SDFF(1,2,4B) 117/129 34-152 373.28 0.95 1.02 1.04 0.33

Overall Averages/Sum(m2) 0.98 0.85 0.86 1919
3-Row

DFF(2B) 14/14 52-60 38.14 0.90 0.82 0.98 0.27
SDFF(2B) 14/14 68-78 191.3 0.92 1.01 1.11 0.63

Overall Averages/Sum(m2) 0.91 0.84 0.96 2440
4-Row

DFF(2,4B) 21/28 52-120 343.11 1.03 0.83 0.97 0.26
SDFF(2,4B) 16/28 68-152 860.79 1.04 1.03 1.13 0.65

Overall Averages/Sum(m2) 1.03 0.83 0.95 2445

90.25%

20 40 60 80 100 120 140 160
Transistors

100

101

102

103

Ru
nT

im
e 

(s
)

Success
Failed

Fig. 6: The outcome and runtime of generating all cells with a
2-row configuration. The horizontal axis represents the number
of transistors(T for short) in each cell.

manually designed layouts. Notably, as illustrated in Figure 6,
all cases with fewer than 100 transistors were successfully
routed, and the runtime for all successfully routed cells was on
the order of hundreds of seconds. The largest cell successfully
routed contains 152 transistors. Additionally, for cells origi-
nally designed as multi-row, 66.4% of the cells achieved equal
or smaller areas. As shown in Figure 7, our flow demonstrates
effective area optimization, particularly for large MBFFs, with
a maximum area reduction of up to 23%.

Furthermore, we applied our approach to more complex
cells with greater row counts (beyond two rows). As shown in
Table III, the runtime remains efficient even as the complexity
increases, demonstrating the scalability of our method.

We also observe that our flow performs less favorably in
terms of area for smaller designs originally implemented as
single-row cells, due to insufficient flexibility in handling such
designs. For example, all latch cells in the original design
are single-row and relatively small (<30T), and the layout
generated by our flow has a larger area. We will optimize the
performance for these cells in the future.

V. CONCLUSION

In this paper, we presented a novel multi-row standard cell
layout synthesis flow that significantly improves the scalability

20 40 60 80 100 120 140 160
Transistors

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Ar
ea

 R
at

io

Fig. 7: Area comparison with manual designs (normalized).

of designing large-scale multi-row cells. By leveraging a hier-
archical approach that employs hybrid combinatorial optimiza-
tion, our method successfully addresses the challenges inherent
in the synthesis of large multi-row standard cells. Experimental
results on an industrial 7nm FinFET library with 316 cells
demonstrate that our approach exhibits excellent scalability,
achieving a maximum area reduction of 23% for large MBFF
cells and delivering runtime reductions of up to 36× compared
to the recent method [8] for multi-row cells. Furthermore, the
fact that the transistor-level placement step in our flow can
be replaced with other single-row placement algorithms, and
the parallelization of placement for each cluster, shows both
the compatibility and scalability of the flow. These results
highlight the potential of our approach for advancing multi-
row standard cell design. Future work will focus on optimizing
routability during placement and improving performance on
single-row and relatively small cells.

REFERENCES

[1] J. Ryckaert, M. H. Na, P. Weckx, D. Jang, P. Schuddinck, B. Chehab,
S. Patli, S. Sarkar, O. Zografos, R. Baert et al., “Enabling sub-5nm
cmos technology scaling thinner and taller!” in 2019 IEEE International
Electron Devices Meeting (IEDM). IEEE, 2019, pp. 29–4.

[2] R. L. Maiasz and J. P. Hayes, “Layout optimization of CMOS functional
cells,” in 24th ACM/IEEE conference proceedings on Design automation
conference - DAC ’87. Miami Beach, Florida, United States: ACM
Press, 1987, pp. 544–551.

[3] M. Lefebvre and C. Chan, “Optimal ordering of gate signals in CMOS
complex gates,” in 1989 Proceedings of the IEEE Custom Integrated
Circuits Conference. San Diego, CA, USA: IEEE, 1989, pp. 17.5/1–
17.5/4.

[4] P. Van Cleeff, S. Hougardy, J. Silvanus, and T. Werner, “BonnCell: Au-
tomatic Cell Layout in the 7-nm Era,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, no. 10, pp.
2872–2885, 2020.

[5] S. Chung, H. Seo, H. Cho, K. Choi, and T. Kim, “Optimal Layout Syn-
thesis of Multi-Row Standard Cells for Advanced Technology Nodes,”
pp. 1–8, 2024.

[6] C.-T. Ho, A. Ho, M. Fojtik, M. Kim, S. Wei, Y. Li, B. Khailany,
and H. Ren, “NVCell 2: Routability-Driven Standard Cell Layout in
Advanced Nodes with Lattice Graph Routability Model,” in Proceedings
of the 2023 International Symposium on Physical Design. Virtual Event
USA: ACM, 2023, pp. 44–52.

[7] D. Park, I. Kang, Y. Kim, S. Gao, B. Lin, and C.-K. Cheng, “ROAD:
Routability Analysis and Diagnosis Framework Based on SAT Tech-
niques,” in Proceedings of the 2019 International Symposium on Phys-
ical Design. San Francisco CA USA: ACM, 2019, pp. 65–72.

[8] Y.-L. Li, S.-T. Lin, S. Nishizawa, and H. Onodera, “MCell: multi-
row cell layout synthesis with resource constrained MAX-SAT based
detailed routing,” in Proceedings of the 39th International Conference
on Computer-Aided Design. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 1–8.



[9] J.-C. Tsai, W.-M. Hsu, Y.-T. Hsieh, Y.-J. Li, W. Huang, C. Ho, J.-H.
Yang, and H.-L. Huang, “MAXCell: PPA-Directed Multi-Height Cell
Layout Routing Optimization using Anytime MaXSAT with Constraint
Learning,” New York, 2024.

[10] D. Lee, D. Park, C.-T. Ho, I. Kang, H. Kim, S. Gao, B. Lin, and C.-K.
Cheng, “SP&R: SMT-Based Simultaneous Place-and-Route for Standard
Cell Synthesis of Advanced Nodes,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 40, no. 10, pp.
2142–2155, 2021.

[11] S. Chakravarty, X. He, and S. Ravi, “Minimum area layout of series-
parallel transistor networks is np-hard,” IEEE transactions on computer-
aided design of integrated circuits and systems, vol. 10, no. 7, pp. 943–
949, 1991.

[12] C.-T. Ho, A. Chandna, D. Guan, A. Ho, M. Kim, Y. Li, and H. Ren,
“Novel transformer model based clustering method for standard cell
design automation,” in Proceedings of the 2024 International Symposium
on Physical Design, 2024, pp. 195–203.

[13] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems, 2008, pp. 337–340.

[14] J. Lienig, “A parallel genetic algorithm for performance-driven VLSI
routing,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1,
pp. 29–39, 1997.

[15] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “Asap7: A 7-nm finfet predictive process
design kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016.


